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a b s t r a c t

Crop productivity in India varies greatly with inter-annual climate variability and is highly dependent on
monsoon rainfall and temperature. The sensitivity of yields to future climate variability varies with crop
type, access to irrigation and other biophysical and socio-economic factors. To better understand sen-
sitivities to future climate, this study focuses on agro-ecological subregions in Central and Western India
that span a range of crops, irrigation, biophysical conditions and socioeconomic characteristics. Climate
variability is derived from remotely-sensed data products, Tropical Rainfall Measuring Mission (TRMM e

precipitation) and Moderate Resolution Imaging Spectroradiometer (MODIS e temperature). We
examined green-leaf phenologies as proxy for crop productivity using the MODIS Enhanced Vegetation
Index (EVI) from 2000 to 2012. Using both monsoon and winter growing seasons, we assessed pheno-
logical sensitivity to inter-annual variability in precipitation and temperature patterns. Inter-annual EVI
phenology anomalies ranged from �25% to 25%, with some highly anomalous values up to 200%.
Monsoon crop phenology in the Central India site is highly sensitive to climate, especially the timing of
the start and end of the monsoon and intensity of precipitation. In the Western India site, monsoon crop
phenology is less sensitive to precipitation variability, yet shows considerable fluctuations in monsoon
crop productivity across the years. Temperature is critically important for winter productivity across a
range of crop and management types, such that irrigation might not provide a sufficient buffer against
projected temperature increases. Better access to weather information and usage of climate-resilient
crop types would play pivotal role in maintaining future productivity. Effective strategies to adapt to
projected climate changes in the coming decades would also need to be tailored to regional biophysical
and socio-economic conditions.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Agriculture is the largest employment sector in India, ranging
from traditional village farming to modern agriculture, with w55%
of the working population relying directly on agriculture for sus-
tenance and livelihoods (Government of India, 2013). Food pro-
duction, and thus food security, is highly impacted by seasonal
weather and long term climate change, including changes in tem-
perature (Peng et al., 2004; Lobell and Burke, 2008; Lobell et al.,
2012; Jalota et al., 2013) and precipitation (Kumar et al., 2004;
Cramer, 2006; Asada and Matsumoto, 2009; Byjesh et al., 2010;
Auffhammer et al., 2012; Barnwal and Kotani, 2013; Jalota et al.,
: þ1 212 854 8188.
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2013). Indian smallholder farmers who own less than 2 ha of
farmland represent 78% of the total Indian farmers and produce 41%
of the country’s food crops. These smallholder farmers are among
some of the most vulnerable communities to climatic and eco-
nomic changes due to limited access to technology, infrastructure,
markets, and institutional or financial support in the case of
adverse climatic events (Singh et al., 2002).

Both inter-annual and long-term climate variability affect food
production in India (Selvaraju, 2003; Kumar et al., 2004; Guiteras,
2007; Revadekar and Preethi, 2012). The El Niño Southern Oscil-
lation (ENSO) and the Indian Ocean Dipole (IOD) impact differential
heating of the Indian Ocean, which disrupts the typical onset of the
Indian monsoon (Wu and Kirtman, 2004, Sankar et al., 2011). A
warm ENSO phase results in an average agricultural loss of US$773
million, whereas a cold ENSO year leads to an average financial gain
of US$437 million (Selvaraju, 2003). In addition to these episodic
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events, historical records indicate that winter precipitation has
significantly increased for all of India since 1954, yet monsoon
precipitation has decreased over most regions (Pal and Al-Tabba,
2011; Subash et al., 2011). Recent research indicates that a less
frequent but intense monsoon could have a negative impact on
crop productivity (Auffhammer et al., 2012).

Extreme precipitation events (>40 mm/day) across all of India
are projected to increase in frequency in the second half of this
century based on findings from the Coupled Model Inter-
comparison Project 5 (CMIP5) (Chaturvedi et al., 2012). Annual
precipitation is projected to increase between 4% and 14% for all of
India by 2080 given “business as usual” parameterizations
(Chaturvedi et al., 2012). The potential benefits of any increased
precipitation on water-limited crops through direct water supply
and increased storage of irrigation water, however, could be offset
by projected increases in temperature (Peng et al., 1995; Wheeler
et al., 2000). Long-term records show that winter temperatures
have increased but there have only been non-significant increases
in monsoon temperatures (Pal and Al-Tabba, 2010; Subash et al.,
2011). By the 2080s, annual temperatures are expected to increase
by 1.7 �Ce4.8 �C according to the CMIP5 models (Chaturvedi et al.,
2012).

Historically, India has demonstrated the capacity to adapt new
practices and technologies to increase agricultural production and
decrease vulnerability to climate variability. The ‘Green Revolution’
benefited the Indian agricultural sector in many ways, introducing
irrigation, fertilizers, and high-yielding crop varieties (Freebairn,
1995). Many argue that the benefits focused on already advan-
taged large-scale farmers in north-western India, while small-scale
farmers in other regions only marginally benefited (Freebairn,
1973; Shiva, 1991; Das, 1999). These small-scale farmers typically
rely on climate-dependent irrigation such as canal irrigation and
shallow dug-wells, and do not always have access to high yielding
crop varieties; they are thus at a greater risk to variations in climate
(Singh et al., 2002). Excessive use of groundwater irrigation in the
north-western part of India has led to severe groundwater deple-
tion (Rodell et al., 2009), and is likely to affect future crop pro-
ductivity in the absence of effective adaptation strategies, such as
new drought-tolerant crop varieties, access to other forms of irri-
gation (e.g. canal irrigation), better and effective storage of
monsoon precipitation, and access to timely weather information
to inform planting strategies (Singh et al., 2002). Baseline infor-
mation on agricultural sensitivity to climate variability could pro-
vide useful information for farm-level strategies and policies that
promote adaption to climate variability. We must therefore first
understand how, and to what degree, crops in different regions in
India respond to current temperature and precipitation variability.

Crop responses to intra- and inter-annual climate variability
have been widely assessed using remotely sensed vegetation
indices, which can accurately capture cropping patterns, including
crop phenology, crop type, and cropping intensity (Xiao and
Moody, 2004; Sakamoto et al., 2006, 2009; Prasad et al., 2007;
Wardlow and Egbert, 2008; Tao et al., 2008; Lobell et al., 2012).
The Moderate Resolution Imaging Spectroradiometer (MODIS)-
derived data products, in particular, have been used to examine
several different crop pattern parameters, such as identifying
cropping rotation (Morton et al., 2006; Sakamoto et al., 2006;
Brown et al., 2007; Galford et al., 2008, 2010; Wardlow and
Egbert, 2008), quantifying crop area coverage (Biradar and Xiao,
2011; Pan et al., 2012), documenting crop-related land use prac-
tices (Wardlow and Egbert, 2008), classifying specific crop types
(Wardlow et al., 2007; Hatfield and Prueger, 2010; Ozdogan, 2010;
Pittman et al., 2010), and monitoring crop phenology (Sakamoto
et al., 2005, 2006; Wardlow et al., 2006). MODIS data products
have been preferred for such applications due to their moderate
spatial resolutions (250, 500, 1000 m), high temporal resolutions
(16-day composites for the vegetation index products), and global
coverage. Although the spatial resolution of MODIS presents chal-
lenges to identify crop patterns in small-scale farms (�2 ha), the
possibility of achieving moderately high accuracy and the ease of
implementation at regional scales offer considerable potential for
time-series analysis of crop cover (Jain et al., 2013).

India is a highly heterogeneous country in terms of environ-
mental characteristics. Annual precipitation in India varies from a
few centimeters in western Indian deserts to several hundred
centimeters in the northeastern mountainous regions of India.
Temperature can vary from less than �40 �C in the Himalayas to
over 50 �C in western India. In addition, a highly variable topog-
raphy across India has resulted in a great variety of soils. In order to
identify relatively homogeneous regions in terms of soil, climate,
physiography and moisture availability periods for crop growth,
India has been grouped into 20 agro-ecoregions (Fig. 1) that have
been further divided into 60 agro-eco subregions (Gajbhiye and
Mandal, 2000).

Previous crop-modeling studies have projected changes in crop
yield based on different climate model-generated scenarios (Lal,
2011). These models generally focus on bio-physical characteris-
tics of crop responses to changing climate in a larger region. Few
studies have assessed the relative agricultural sensitivity to
changing climate among different agro-eco subregions that differ in
their access to irrigation, source of irrigation (groundwater vs.
surface irrigation), crop type (food crops vs. cash crops), andmarket
access. Better understanding of the potential and constraints in
each of these agro-eco subregions will help formulate effective
strategies to adapt to a changing climate.

The aim of this study is to quantify decadal changes in seasonal
crop covers and identify, compare and contrast agricultural sensi-
tivity to inter-annual climate variability in two Indian agro-eco
subregions. We use satellite-derived Enhanced Vegetation Index
(EVI) to capture heterogeneity in crop cover across space and time.
The term ‘crop cover’ in this study includes both crop greenness (a
measure for crop productivity) and crop extent (or field area), since
the EVI value at the pixel level can be influenced by both. We
address the following questions in this study:

1. Which climate variables (precipitation and temperature) most
influence crop cover for monsoon and winter crops from 2000
to 2012 in the two study regions?

2. How does the sensitivity of crop cover to climate variability vary
in different agro-ecological regions with different socio-
economic factors?

We first quantified seasonal peak EVI values and anomalies in
crop cover at the pixel level (2000e2012). We then constructed
mixed-effect models to identify the most important climate vari-
ables for crop cover for each season in each of the study sites. With
these results, we discussed the relative climate sensitivity in the
context of socio-economic characteristics of these two regions.

2. Materials and methods

2.1. Study sites

We selected two sites from different agro-ecological subregions
in central and western India (Fig. 1) based on our long-term
research experience in these regions, thus enabling us to better
interpret the findings. These sites represent a variety of de-
mographic characteristics (Table S1), cropping practices (Table S1),
precipitation range (Fig. 2), irrigation access (Fig. 3), and market
dependence that is typical of the Indian agricultural sector (Fan



Fig. 1. Location and topography of the two study sites in e a. Western India, and b. Central India. Digital elevation data (spatial resolution: 1 km) was obtained from the Global Land
One-km Base Elevation (GLOBE) Project.
Source: NOAA, 2013.
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et al., 2000; Gajbhiye and Mandal, 2000; O’Brien et al., 2004). The
Central India site encompasses five districts in the state of Madhya
Pradesh, namely Balaghat, Chhindwara, Seoni, Dindori, and Man-
dla, covering a total of 43,072 sq. km. The site is located within the
“hot moist sub-humid” agro-ecological subregion that covers Sat-
pura range and Wainganga valley. This subregion has a shallow to
deep loamy to clayey, mixed red and black soil type (agro-eco re-
gion: 10; see Gajbhiye and Mandal, 2000 for details). This site re-
ceives an average monsoon rainfall of 1225 mmwith an average of
30 mm of winter rainfall (Fig. 2), has little to moderate access to
irrigation (Fig. 3) through surface canals and shallow tanks and
wells, and produces predominantly food crops (rice, wheat, pulses)
for local consumption and local markets. Rice and wheat are
respectively the main monsoon and winter crops in most parts of
this ecological subregion.

The Western India site spans three districts in the state of
Gujarate Ahmadabad, Kheda, andMehsana, covering a total area of
16,461 sq. km. This “hot dry semi-arid” ecological subregion covers
the north Gujarat Plain (agro-eco region: 4; see Gajbhiye and
Mandal, 2000 for details), and has a deep loamy, gray-brown soil
type. In contrast to the Central India site, this site receives low
monsoon rainfall (approximately 840 mm e Fig. 2) with little or no
Fig. 2. Seasonal precipitation in e a. Central India and b. Western India study sites
from 2000 to 2013. Monsoon precipitation was calculated for May to October during
2000e2012. Winter precipitation was calculated for November to January from 2000e
2001 to 2012e2013.
winter rainfall, produces both food (wheat, pulses, maize) and cash
(cotton, castor) crops, is highly irrigated (Fig. 3) through ground-
water and surface canals, and is very market-oriented (Dubash,
2002; Gajbhiye and Mandal, 2000). Rice, cotton, and castor are
the main monsoon crops, while wheat, rice, and potato are the
main winter crops in this subregion.

2.2. Phenological data

MODIS EVI data products (May 2000eMarch 2013, 250 m) were
obtained from the IRI/LDEO Data Library (IRI/LDEO Data Library,
2013). The data are spatial and temporal composites of only the
most cloud-free daily values over a 16-day period from MODIS
(Huete et al., 2002). We preferred EVI over other remotely-sensed
vegetation indices as it better adjusts for background soil and
canopy reflectances (Huete et al., 2002). The EVI time-series was
smoothed using a cubic smoothing spline function to correct for
any remaining high-frequency noise, such as from clouds (Jain
et al., 2013). Then we clipped the EVI time-series for monsoon
and winter seasons. The monsoon season was defined as May 8 to
November 15 and the winter crop seasonwas defined as December
2 through March 21 based on our field experience, crop calendar
(Ministry of Agriculture, 2010), and MODIS phenology (Fig. S1).
Fig. 3. Crop-wise area irrigated in e a. Central India (2000e2010) and b. Western India
study sites (2000e2008).
Source: IndiaStat, 2013.



Table 1
Detailed description of climate variables used in the study.

Climate variables Description

Wetstart Wet season start datea: First wet day (>1 mm) of first 5-day wet spell (wet spell amount � m13-year wet season*5) which is not
immediately followed by 10-day dry spell with <10 mm (to exclude false start)

Wetend Wet season end date: Last wet day (>1 mm) of last 5-day wet spell which is NOT immediately preceded by 10-day dry spell with
<10 mm (to exclude post-monsoon short spell)

Wetlen Wet season length: Wet season end date e Wet season start date
Monrainy Number of monsoon rainy days: monsoon days between first wet day and last wet day with mdaily � m13-year wet season

Mondry Number of monsoon dry days: monsoon days between first wet day and last wet day with mdaily < m13-year wet season

Monnorain Number of monsoon days with no rainfall: monsoon days between first wet day and last wet day with mdaily ¼ 0
Totalmonrain Total monsoon rainfall: (Srainfalldaily) (for wet season start date to wet season end date)
SDII Simple Daily Intensity Index: Total monsoon rainfall/number of monsoon rainy days
Winrainy Number of winter rainy days: Number of NDJb winter days with mdaily � m13-year dry season

MonTmax Monsoon daytime temperature max: (Smmonthly)/3 (for JJAb maximum temperature in �C)
MonTmin Monsoon daytime temperature min: (Smmonthly)/3 (for JJA minimum temperature in �C)
MonTmean Monsoon daytime temperature mean: (Smmonthly)/3 (for JJA mean temperature in �C)
MonTrange Monsoon daytime temperature range: Winter temperature maxeWinter temperature min
MonNTmax Monsoon nighttime daytime temperature max: (S mmonthly)/3 (for JJA maximum temperature in �C)
MonNTmin Monsoon nighttime temperature min: (Smmonthly)/3 (for JJA minimum temperature in �C)
MonNTmean Monsoon nighttime temperature mean: (Smmonthly)/3 (for JJA mean temperature in �C)
MonNTrange Monsoon nighttime temperature range: Winter temperature maxeWinter temperature min
WinTmax Winter daytime temperature max: (Smmonthly)/3 (for NDJ maximum temperature in �C)
WinTmin Winter daytime temperature min: (Smmonthly)/3 (for NDJ minimum temperature in �C)
WinTmean Winter daytime temperature mean: (Smmonthly)/3 (for NDJ mean temperature in �C)
WinTrange Winter daytime temperature range: Winter temperature maxeWinter temperature min
WinNTmax Winter nighttime temperature max: (Smmonthly)/3 (for NDJ maximum temperature in �C)
WinNTmin Winter nighttime temperature min: (Smmonthly)/3 (for NDJ minimum temperature in �C)
WinNTmean Winter nighttime temperature mean: (Smmonthly)/3 (for NDJ mean temperature in �C)
WinNTrange Winter nighttime temperature range: Winter temperature maxeWinter temperature min

a January 1 is counted as Day 1.
b NDJ ¼ NovembereDecembereJanuary, JJA ¼ JuneeJulyeAugust.
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A pixel was defined to have a peak if the EVI time series had an
inflection point with a local maximum during the season of interest
(Fig. S2). Two masks were applied on the time-series e a) the first
one masked any MODIS pixel without a peak in EVI phenology
(Fig. S2) in any year of the time-series (i.e. pixels that were never
cropped), and b) the second one masked non-agricultural pixels,
including scrubland, forest, bare land and urban areas using the
Random Forest classification algorithm (Breiman, 2001; Jain et al.,
2013). For unmasked pixels, we determined the peak EVI value
for each season, and each year for 2000e2012. In the absence of a
peak in a particular year, the algorithm returned the EVI value for
pre-specified dates (monsoon: September 4 and winter: January
24). If the pixels were ‘cropped’, these dates are most likely to
capture the most representative EVI values. In absence of a peak,
these pixels will represent either a ‘failed crop’ or a fallow pixel. The
peak MODIS values were then spatially aggregated to match the
extent of the climate variables (0.25� e see Section 2.3 for details),
which is the coarsest spatial resolution of datasets used for this
study. We also calculated the seasonal EVI anomaly (EVIs) as:
[((EVIa/EVIm)� 1)*100], where EVIa are the peak EVI values and EVIm
are long-term seasonal means.

2.3. Climate variability

We used the Tropical Rainfall Measuring Mission (TRMM)
dataset from the IRI data library (IRI/LDEO Data Library, 2013) to
calculate precipitation-related variables. Data were obtained for
monsoon (MayeOctober) and winter (NovembereJanuary) pre-
cipitation for each of the study sites. These datasets represent
compiled daily precipitation values in mmwith a spatial resolution
of 0.25� (w27.83 km at equator). We selected nine precipitation
variables to be calculated on these datasets, namely wet season
start date, wet season end date, wet season length, number of
monsoon rainy days, number of monsoon dry days, number of
monsoon days with no rainfall, total monsoon rainfall, simple daily
intensity index, and number of winter rainy days based on existing
literature (Mearns et al., 1996; Kumar et al., 2004; Gadgil and
Kumar, 2006; Chen et al., 2013) and personal communication
with the farmers. A detailed description of these variables has been
provided in Table 1. All nine variables were considered as predictors
in models for both seasons for each of the 13 years, except the
number of winter rainy days, which was considered only for winter
season models.

To calculate temperature variables, we used the MODIS land
surface temperature (LST) dataset (MOD11A2) from the NASA
LPDAAC (USGS, 2013) for both monsoon and winter seasons. This
dataset is an 8-day composite of average values of clear-sky LST
with a sinusoidal projection and a spatial resolution of 1 km. The
data were rescaled to convert to units of degree Celsius and re-
projected to WGS-84 coordinate system. Both the daytime and
nighttime LST values from the re-projected and rescaled datasets
were used to calculate a total of sixteen temperature variables
(Table 1). All these datasets were then aggregated to TRMM pixel
level.

2.4. Mixed-effect model

All of the explanatory variables (section 2.3) were standardized
using the following formula: xz ¼ (xi � m)/s, where xz is the
standardized value of a particular pixel, xi is the original value of
that pixel, m is the 13-year mean, and s is the standard deviation.
Some of the climate variables showed a high degree of multi-
collinearity (Table S2), and were excluded from further analyses.
Pearson’s r was used as a measure for correlation, and a cut-off
value of 0.6 was used to exclude collinear variables with
maximum possible variable retention. Final sets of variables used
for each study area are listed in Table 2. Intra-class correlation
(ICC) (Kreft and DeLeeuw, 1998) was calculated to determine if
random effects are present in the dataset, and if a linear mixed-
effect model should be used to explain the climate dependence
of agricultural productivity (See Supplementary Information for
details).



Table 2
Final set of climate variables used in the statistical models after excluding multi-
collinear variables.

Study site Season Final set of variables

Central India Monsoon Wetstart, wetend, totalmonrain, SDII,
monnorain, monTmean, monTrange,
monNTmean, monNTrange

Winter Wetstart, wetend, totalmonrain, SDII,
monnorain, winrainy, winTmean,
winTrange, winNTmean, winNTrange

Western India Monsoon Wetstart, monrainy, mondry, SDII,
monTmean, monTrange, monNTmax,
monNTmean

Winter Wetstart, monrainy, mondry, SDII,
winrainy, winTmean, winTrange,
winNTmean, winNTrange
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Random effects for the ‘district’ variable ranged between 24%
and 56% for monsoon, and over 50% for winter (See
Supplementary Information for details), based on which linear
mixed-effect models were used to address variations across
different districts and across different pixels within each district.
The Central and Western India sites have sample sizes of 832 (64
for each year) and 351 (27 for each year) respectively. The peak
EVI values for each pixel were used as the independent variable
in the mixed-effect models, while we also used descriptive sta-
tistics to explain EVI anomalies across the two study sites. Mul-
tiple mixed-effect models were run with different combinations
of predictor variables for each of the study areas for each season.
The Akaike Information Criterion (AIC) (Akaike, 1974), which is a
measure of the relative quality of each statistical model consid-
ering both goodness of fit and minimization of parameters, was
used to select the final models for each season and study site
combination.
Fig. 4. EVI anomalies across years for monsoon (a. Central India site, b. Western India sit
calculated as percent deviations from 13-year seasonal mean.
3. Results

3.1. Crop cover anomalies

3.1.1. Monsoon season
Monsoon EVI anomaly in both sites shows considerable vari-

ability across space and time. Fig. 4 illustrates the range of
TRMM-level seasonal EVI anomaly for each year. In the Central
India site, monsoon anomaly varies between �20% and 20% of the
13-year mean, with the greatest negative anomaly (i.e. lowest
median crop cover) in 2012 (Fig. 4a). The years 2003, 2007, and
2010 had higher EVI as revealed by approximately 10% more crop
cover than the 13-year mean (Fig. 4a). Inter-annual variability in
this site is lower than that in the Western India site. Monsoon EVI
anomaly in the Western India site varies between �25% and 20%
of the 13-year mean (Fig. 4b). The years 2003, 2007, and 2010
show more crop cover than other years in the Western India site
as well. But unlike the Central India site, the median values are
lower than 10% in low production years such as 2002, 2004, and
2012 (Fig. 4b).
3.1.2. Winter season
For winter seasons both of our study sites show greater vari-

ability than the monsoon season, both within each year and
across the years. Overall variability ranges from �25% to 25% for
both sites (Fig. 4c, d). Some pixels in the Central India site
recorded high anomalies up to 200% (not shown in the figure).
The winter seasons of 2003e04 and 2009e10 were particularly
high crop cover years for the Central India site with approxi-
mately 10% more cover than the 13-year mean value (Fig. 4c). The
winter season of 2000e01 showed the lowest crop cover for this
site. In the Western India site the anomaly shows a somewhat
upward trend (Fig. 4d), with the maximum positive anomaly in
e), and winter (c. Central India site, d. Western India site). Seasonal anomalies were



Fig. 5. Standardized regression coefficients generated by mixed-effect models for monsoon (a. Central India site, b. Western India site), and winter (c. Central India site, d. Western
India site).

P. Mondal et al. / Journal of Environmental Management 148 (2015) 21e3026
2010e11 and the minimum negative anomaly in 2000e01. The
year 2009e10, which was a high crop cover year for the Central
India site, was the lowest cover year for Western India since
2004e05.
3.2. Relative importance of climate variables

3.2.1. Monsoon season models
The best mixed-effect models based on the lowest AIC values for

each study site reveal little commonalities in the list of the most
influential climate variables formonsoon crop cover (Fig. 5). Among
the eight climate variables selected in the best monsoon model for
the Central India site (Fig. 5a), monsoon end date was the most
important (Fig. 6a), closely followed by monsoon days with no
rainfall, total monsoon rainfall, and monsoon start date. Among
temperature variables, nighttime variables were more influential.
All the variables, except monsoon end date and nighttime tem-
peratures, have inverse relationships with monsoon peak EVI
values. According to the best monsoon model for theWestern India
site, daytime temperature range, number of monsoon rainy days,
and daytime mean temperature variables are the most closely
related ones to monsoon crop cover (Figs. 5b and 6b). Monsoon
start date, mean daytime temperature, and maximum nighttime
temperature have inverse relationships with monsoon peak EVI
values in the Western India site.
3.2.2. Winter season models
For both sites, winter daytime mean temperature is the

overwhelmingly important variable despite the differences in
biophysical and socio-economic conditions (Fig. 6c, d). In the
Central India site, total amount and intensity of monsoon rain-
fall, and winter rainy days are the most important climate pa-
rameters for winter peak EVI values other than the temperature
variables (Fig. 5c). The number of winter rainy days, which has a
negative impact on winter crop cover in the Central India site,
has slightly positive impact on winter crop cover in the Western
India site (Fig. 5c, d). Monsoon start date and number of
monsoon rainy days were more important for winter crop cover
in the Western India site other than the day and nighttime
temperature (Fig. 5d).



Fig. 6. Heterogeneity of crop cover and most important climate variable across years for monsoon (a. Central India site, b. Western India site), and winter (c. Central India site, d.
Western India site). Each year has a sample size of 64 for the Central India site and 27 for the Western India site.
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4. Discussion

4.1. Central India site

Crop cover in the Central India site shows a close relationship
with several temperature and precipitation variables. Especially in
the monsoon, an overall decrease in precipitation will severely
affect crop production as was seen during the recent drought year
of 2012 (Fig. 4a). Our findings also suggest that crop cover in this
site tends to rely more on the combined effects on monsoon start
and end date, monsoon days with no rainfall and intensity of
rainfall, rather than total monsoon rainfall alone. The year 2011 was
one of the highest average monsoon rainfall years in the past
decade (Fig. 2). Crop cover in that year, however, shows a slightly
negative anomaly compared to the 13-year mean (Fig. 4a), which
might be attributed to a rather latemonsoon start date (Fig. S3). The
mixed-effect model suggests an inverse relationship between total
monsoon rainfall and crop cover (Fig. 5a) that seems counter-
intuitive, since rice requires a substantial amount of water either
from direct precipitation or through irrigation. This might be
explained by the fact that a late monsoon start date can severely
affect the vegetative phase of the rice crop through a trans-
plantation shock (Gadgil and Kumar, 2006), leading to an overall
production deficit even in case of a higher total monsoon precipi-
tation. An average of only 30% of total rice fields are irrigated in the
Central India site (Fig. 3), hence precipitation timing will play a
critical role in future monsoon crop production in the absence of
irrigation.

The monsoon crop in the Central India site is negatively
affected by higher mean daytime temperature, but is positively
correlated to mean nighttime temperature and nighttime tem-
perature range (Fig. 5a). These findings suggest that the ultimate
crop reaction pathways will be determined by both absolute
temperature increases and intra-seasonal temperature fluctua-
tions. Crops often respond differently to seasonal temperature
range depending on the combined positive effects of increasing
temperature before dormancy and negative effects of increasing
temperature after dormancy (Chen et al., 2013). Since most
climate models have projected an increase in both maximum and
minimum temperature in the future decades, future crop pro-
ductivity can be seriously impacted in absence of more heat-
tolerant crop varieties.
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The primary winter crops in the Central India site are wheat and
pulses with very different water requirement as shown by their
irrigation coverage (Fig. 3). Wheat requires moderate amount of
water, especially during the growing phase, and soil moisture alone
is not enough to get high wheat yields. Frequent winter rainy days
and/or access to irrigation can help increase wheat productivity.
Pulses, on the other hand, can thrive on soil moisture stored from
monsoon precipitation, and do not need considerable amounts of
irrigated water (Fig. 3) in the absence of winter precipitation. Be-
sides, excessive water through frequent or intense winter rainy
days early in the season could decrease pulse productivity (Mondal,
personal observation). Approximately 50e60% of wheat fields in
this site receive irrigatedwater (Fig. 3), and the rest of the fields still
rely only on winter precipitation, which can be highly variable in
this area (Fig. 2). Moreover, winter crop cover is highly sensitive to
mean daytime temperature (Fig. 6c). The years of 2003, 2004, 2009,
and 2011 received above average winter rainfall in this site (Fig. 2),
while only 2003 and 2009 witnessed an increase in crop cover
(Fig. 4c) likely due to relatively lower mean temperature compared
to 2004 and 2011 (Fig. 6c). Wheat productivity is known to be
sensitive to temperature (Lobell et al., 2012), besides higher tem-
perature would reduce soil moisture, thus affecting the produc-
tivity of pulses as well. In a mostly climate-dependent agricultural
system such as this Central India site, access to irrigation can play a
critical role in winter food production. Supplemental irrigation is
known to improve rain-fed wheat yields in China even with
increasing temperature (Guoju et al., 2005). It remains unknown,
however, if the existing irrigation network in Central India could
effectively buffer against the projected increase in winter temper-
ature in the coming decades.

4.2. Western India site

In the Western India site, crop cover is impacted by several
climate factors, particularly during the monsoon season. Overall,
temperature parameters were more important than rainfall pa-
rameters in explaining crop cover in this region. During the
monsoon season, cooler daytime and nighttime temperatures
resulted in higher crop cover (Fig. 5b). This is likely becausewarmer
temperatures have been shown to negatively impact the yields of
several of the main crops grown during the monsoon season in the
region, including BT cotton and rice (Baker et al., 1992; Buttar et al.,
2012). Considering rainfall parameters, a greater number of rainy
days and increased intensity of rainfall led to increased agricultural
productivity in this region (Fig. 5b). This is likely due to several
reasons. First, in this semi-arid region, water is a limiting factor for
crop growth; so more frequent and more intense rainfall events
lead to greater amounts of water available for plant uptake. Second,
an increase in the number of rainy days also improves crop cover
because it provides more regular watering of crops over the course
of the season and reduces the number of days that crops are
exposed to hot and dry conditions and experience water stress,
which negatively impact yields (Hunsaker et al., 1998).

During the winter season, the negative effect of increased mean
temperature was the most influential for crop cover in the Western
India site (Fig. 5d). This is likely due to the negative impact of
warmer temperature on the yields of several of the main crops
grown during the winter season, including winter wheat and rice
(Baker et al., 1992; Lobell et al., 2012). Regarding precipitation var-
iables, greater daily intensity resulted in increased crop cover while
a greater number of monsoon rainy days and a later monsoon start
date resulted in reduced crop cover (Fig. 5d). This may be because a
late monsoon start date is often associated with farmers switching
to late season, longer duration crops like castor and long duration
cotton (Jain, unpublished). This is because early season varieties,
which require shorter growing periods, may not be a viable planting
option when the monsoon onset occurs after the ideal date of
sowing these crops. Furthermore, a greater intensity may be asso-
ciated with increased crop cover during the winter season because
more intense rainfall eventsmay lead to increased irrigation storage
in surface water sources (e.g. canals) due to a greater amount of
runoff. It is important to note that the EVI range of thewinter crop in
this region had an upward trend over the course of our study period.
This may be due to a variety of different factors, such as improved
access to weather forecasts in the region, or high-yielding crop va-
rieties that are less sensitive to climatic fluctuations.

4.3. Broad climatic impact on agriculture and future directions

Considering the future of agriculture in these two regions,
projected precipitation changes may have a positive impact on crop
cover but projected temperature increases will likely have a
simultaneous negative impact. The monsoon crop in the Central
India site is much more sensitive to precipitation variables (such as
monsoon start date and end date) than that in the Western India
site, and both sites are highly sensitive to temperature. Regional
climate models predict that overall precipitation will increase all
over India (Chaturvedi et al., 2012), with the number of rainy days
and the intensity of rainfall events also increasing (Kumar et al.,
2011). Given our model results for the monsoon season, an in-
crease in the frequency and intensity of rainfall events will likely be
associated with a positive effect on monsoon crop cover in the
western India site (Fig. 5b) due to the reduction of periods of water
stress, whereas the monsoon timing will play a more critical role in
the Central India site (Fig. 5a) due to less flexible planting strategies.

The negative effects of increased daytime temperatures on
monsoon crop productivity may counteract any precipitation
benefit (Fig. 5a and b), given that climate models also project a
simultaneous increase in temperature. Considering winter model
results for both study sites, it is likely that future climate change
will severely affect winter crop cover due to the negative impact of
daytime warming on crop yields (Fig. 5c and d). This is particularly
problematic since irrigation, which is one of the main technologies
to buffer against climate shocks, especially in theWestern India site
(Fig. 3), will likely not be able to ameliorate these climate impacts
given that it can do little to buffer against temperature shocks
(Fishman, 2011; Taraz, 2012). Instead, if current crops begin to face
systematic decreases in yields due to increasing temperature,
farmers may have to look towards new climate-resilient crop va-
rieties that are better able to thrive and resist the negative impacts
of warming (U.S. Department of State, 2013).

Effects of increasing temperature on crop productivity vary
widely depending on the timing and degree of temperature change,
and crop type (Mearns et al., 1996; Lobell et al., 2012). Examining
specific crop responses or the effects of timing of temperature
change on crop productivity would require a more fine-scale spa-
tio-temporal analysis, andwas not addressed in this study. It should
also be noted that the EVI anomaly reported in this study can be
influenced by a change in crop type (e.g. a shift towards leafier
crops), an increase in crop yield, or an increase in crop area. Iden-
tifying the exact contributing factor towards EVI anomaly is beyond
the scope of this study, but methods to tease apart these differences
are under development (Jain et al., unpublished data).

Our findings indicate that districts are notably different from
each other in terms of sensitivity of crop cover to precipitation and
temperature. While we did not directly include socio-economic
variables in the mixed-effect models, it can be inferred from the
results that district-level socio-economic factors, such as irrigation
access, market influences, demography, and policies play critical
role in agricultural production. For instance, our site in Western
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India has better groundwater irrigation coverage than the Central
India site, leading to its lower sensitivity to climate variability,
particularly precipitation variables. Groundwater irrigation offers
increased buffering capacity against certain climate shocks given
that it is insensitive to intra- and inter-annual climate fluctuations.
The Western India site also has better access to the market and
agricultural extension services than the Central India site. These
may have reduced this region’s sensitivity to climate fluctuations
due to increased access to new seed varieties that may be more
tolerant to climate variability. Better access to weather information
might also help farmers plan cropping strategies that are better
tailored to predicted weather patterns in a given year. It is impor-
tant for future research to delve into these complex dynamics and
identify the most important factors for future food security.

5. Conclusions

This study examined the climate sensitivity of crop cover in two
Indian agro-eco subregions. We first quantified anomalies in crop
cover for monsoon andwinter seasons at pixel level using a 13-year
EVI time series data (2000e2012). We then identified the most
important climate variables associated with EVI values for peak-
season crop cover, both for monsoon and winter, in each of these
study sites. Considering the two questions we outlined in the
introduction, different climate variableswere found to be important
in these two agro-ecological regions, and these differences may be
attributed to differences in access to irrigation, market influences,
and technology between these two regions. Specifically, we found
that despite access to irrigation, crop cover in theWestern India site
showed substantial fluctuations during the monsoon, probably due
to changing planting strategies, although this region was less sen-
sitive to precipitation indices compared to the Central India site.
Both sites showed strong sensitivity to daytime and nighttime
temperatures for both seasons, especially to winter daytime
warming. The Western India site was less sensitive to monsoon
precipitation variability, likely due to increased access to ground-
water irrigation that is insensitive to inter and intra-annual climate
variability. The site in Central India, on the other hand, had less ac-
cess to irrigation and also was dependent more on climate sensitive
irrigation, like shallow dug-wells which are filled due to rainwater
harvesting during the monsoon season. It is therefore crucial for
future foodproduction to have better access to sustainable irrigation
and heat-tolerant high-yielding crop varieties.
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